UNDERGRADUATE FOURTH SEMESTER (HONOURS) EXAMINATIONS, 2022

Subject: Mathematics

Course Code: SH/MTH/405/SEC-2
Course ID: 42115

Time: 2 hours

Course Title: Graph Theory

Full Marks: 40

The figures in the margin indicate full marks
 Notations and symbols have their usual meaning

1. Answer any five of the following questions:

a) Is the degree sequence $(5,3,3,3,2,2,1,1)$ graphical?
b) Show that on a digraph the total sum of in-degrees is equal to total sum of out-degrees.
c) Find the number of vertices in a graph with 15 edges, if each vertex has degree 2.
d) Show that a k-regular graph of order $2 k-1$ is Hamiltonian.
e) Prove that a complete graph with n vertices contains $n(n-1) / 2$ edges.
f) Check whether the complete bipartite graph $K_{2,4}$ isEulerian or Hamiltonian?
g) Show that in a connected graph of order n and size $m(m<n)$, there exists atleast one pendent vertex.
h) Draw a graph whose adjacency matrix is given by
$\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$. Is this graph bipartite?
2. Answer any four of the following questions:
(5X4=20)
a) Show that a tree with n vertices has exactly $n-1$ edges.
b) (i) If a graph contains exactly two vertices of odd degree then show that there exists a path between these two vertices.
(ii) If G is simple with minimum vertex degree $\geq \frac{n-1}{2}$, then prove that G is connected.

$$
2+3=5
$$

c) (i) If a simple graph G has at most $2 n$ vertices and the degree of each vertex is at least n, then show that the graph is connected.
(ii) Let G be a graph and u, v be two vertices in G such that $u \neq v$. If there is a trail from u to v, then show that there is a path from u to v.
d) (i) Define a Hamiltonian cycle.
(ii) Let u and v be two vertices of a connected simple graph G such that $d(u)+d(v) \geq n$.

Then G is Hamiltonian if and only if $G+\{u, v\}$ is Hamiltonian.
$1+4$
e) Define a weighted graph. Using Warshall's algorithm, find the distance between each pair of vertices of the following weighted graph

f) (i) Define the eccentricity of a vertex in a graph.
(ii) A person has to visit four cities $\{A, B, C, D\}$ starting from A and return to A after visiting all the cities exactly once. Find the cost saving optimal route where the travelling cost matrix among the cities is given below:

	\boldsymbol{A}		\boldsymbol{B}	\boldsymbol{C}
\boldsymbol{D}				
\boldsymbol{A}	-	5	2	3
\boldsymbol{B}	2	-	4	3
\boldsymbol{C}	2	4	-	7
\boldsymbol{D}	3	3	7	-

3. Answer any one of the following questions:
(10X1=10)
a) (i) Show that on a bipartite graph every circuit is of even length.
(ii) Using Dijkstra's Algorithm find the length of the shortest path of the following graph from the vertex a to each of the vertices c, f and i.

(iii) Show that every connected graph has a spanning tree.
$3+5+2$
b) (i)Show that the degree of a vertex is invariant under graph isomorphisms.
(ii) Define a semi-Eulerian graph and draw a semi-Eulerian graph which is not Eulerian.
(iii)Show that a simple graph (order ≥ 2) has atleast two vertices of the same degree.
(iv) Let $I(G)=\left(a_{i j}\right)_{n \times m}$ be the incidence matrix of a graph G with ordered vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Show that

$$
\sum_{j=1}^{m} a_{i j}=d\left(v_{i}\right)
$$

